

Diffusion Policy

Thursday, August 7, 2025 11:39 AM

Diffusion Policy

Core idea:

- Diffusion Policy applies diffusion models (from ing generation) to generate robot trajectories & control policies
- Model learns to refine random noise into coherent action sequence by iteratively denoising

Simple Example (1D)

Step 1 - Setup State Space

$S \in \mathbb{R}^G$
 $S = [0, 10]$
Action space = $[-5, +5]$ Continuous Action Space
Trajectory = $[a,]$ Timesteps
Goal: Generate trajectory $0 \rightarrow 3$
so 1 timestep
Perfect Trajectory = $[+3.0]$

Neural Net:

$$f(\text{noisy-trajectory}, \text{timestep}, \text{current-state}) \rightarrow \text{predicted-noise}$$
$$L = \|\hat{z} - z\|_2^2 \quad (\text{MSE})$$

Training Phases:

Step 1: Collect goal train data

sample 1	Sample 1	Sample 2	Sample 3
Initial State:	0.0	0.0	0.0
Goal:	3.0	3.0	3.0
Goal Trajectory:	$[+3.0]$	$[+2.8]$	$[+3.3]$
Result:	$0.0 + 3.0 = 3$	$0 + 2.8 = 2.8$	$0 + 3.3 = 3.3$

Step 2: Forward Diffusion (Training adding noise)

Noise schedule

- timestep 0: No noise
- 1: $x_0 + N(0, \sigma=0.3)$ Add noise from normal distribution This makes it easier for the NN's to learn the noise
- 2: $x_1 + N(0, \sigma=0.7)$
- 3: $x_2 + N(0, \sigma=1.5)$

For $[+3.0]$ NN training $([NT, T, CS], \text{true noise})$

$t=0$ (clean)

$x_0 = [3.0]$

$t=1$ (light noise)

$$x_1 = x_0 + N(0, \sigma^2) = ([+3.2], 1, 0.0], [+0.2])$$

"When I see $[+3.2]$ at $t=1$ w/ $CS=0.0$, the noise is $[+0.2]$ "

$t=2$ (medium)

$$x_2 = x_1 + N(0, \sigma^2) = ([+3.7], 2, 0.0], [+0.5])$$

"When I see $[+3.7]$ at $t=2$ w/ $CS=0.0$, the noise is $[+0.5]$ "

$t=3$ (heavy)

$$x_3 = x_2 + N(0, \sigma^2) = ([+4.8], 3, 0.0], [+1.1])$$

"When I see $[+4.8]$ at $t=3$ w/ $CS=0.0$, the noise is $[+1.1]$ "

Generation Phase

Step 1 - Start w/ noise

CS - 0.0 (start position)

Goal: 3.0

Random starting trajectory: $x_0 = [+5.1]$

Would result in $0.0 + 5.1 = 5.1 > 3.0$ overshoot!

Step 2 - Reverse Diffusion (Remove Noise iteratively)

$t=3 \rightarrow 2$ (Remove heavy noise)

Noisy-trajectory: $[+5.1]$

timestep: 3

current state: 0.0

$$f([+5.1], 3, 0.0) = [+1.1] \quad (\text{predicted noise})$$

$$x_2 = x_1 - \text{noise} = [+5.1] - [+1.1] = [+4.0]$$

$t=2 \rightarrow 1$ (Remove medium noise)

$$f([+4.0], 2, 0.0) = [+0.5]$$

$$x_1 = x_2 - \text{noise} = [+4.0] - [+0.5] = [+3.5]$$

$t=1 \rightarrow 0$

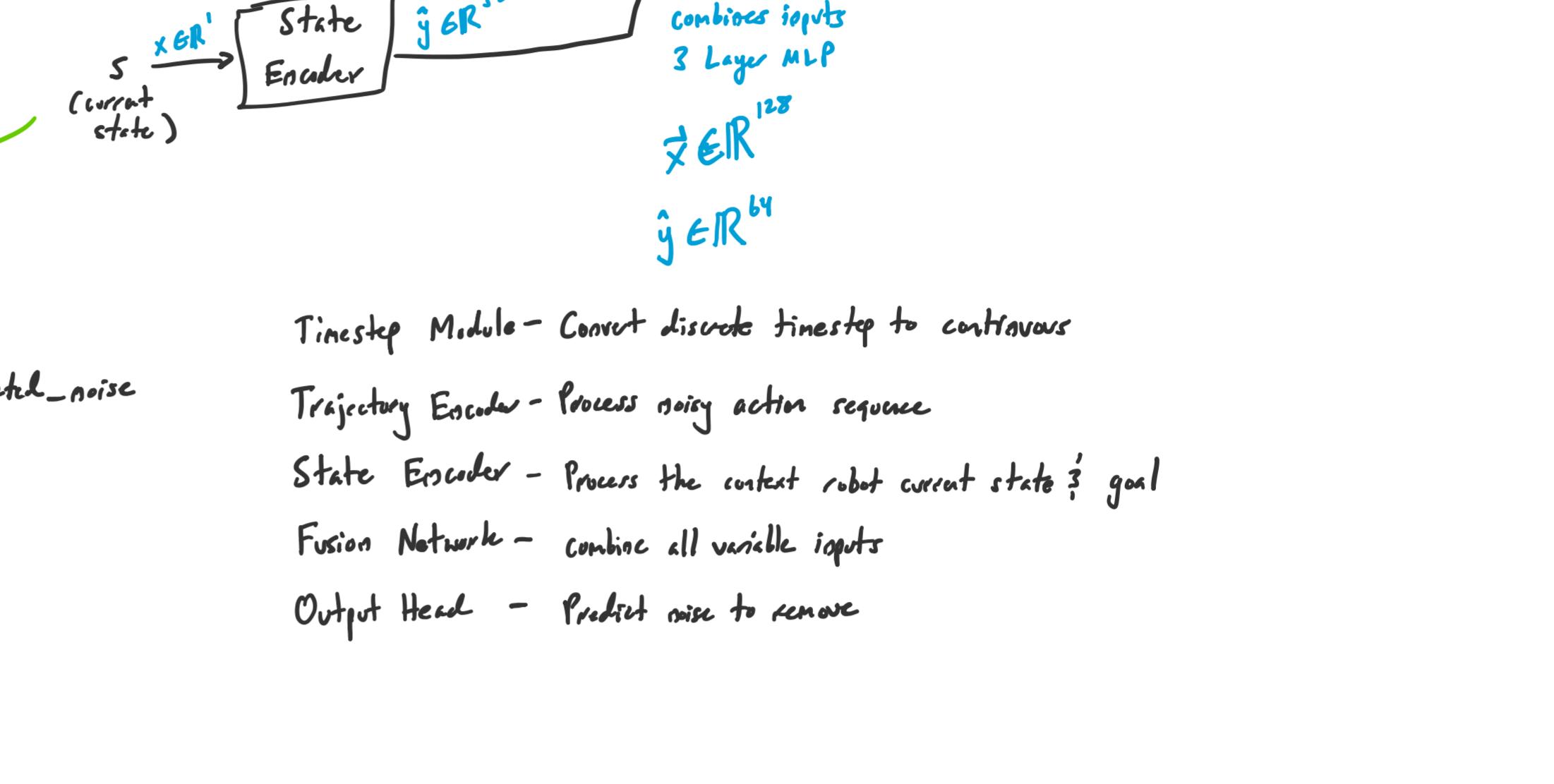
$$f([+3.5], 1, 0.0) = [+0.2]$$

$$x_0 = x_1 - \text{noise} = [+3.5] - [+0.2] = [+3.3]$$

Goal Check: $1.3 - 3.0 = -1.7$ very close!

Execution Phase

generated trajectory = $[+3.3]$


execute $[+2.3]$

Assume $x_{t-1} = 3.3$

state: 3.0

loc: 3.0

Goal Achieved! (otherwise repeat!)

