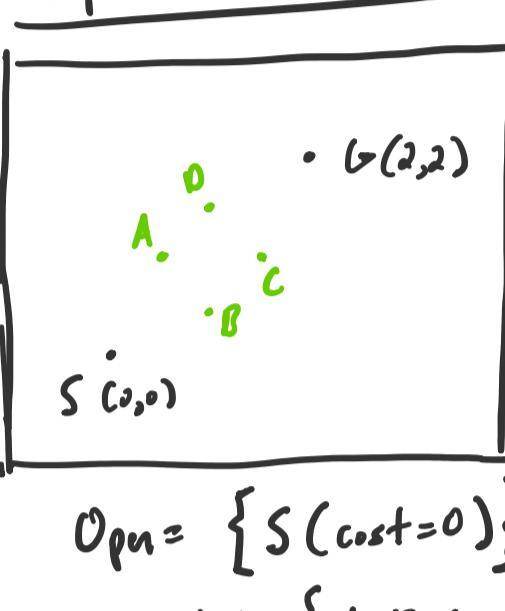
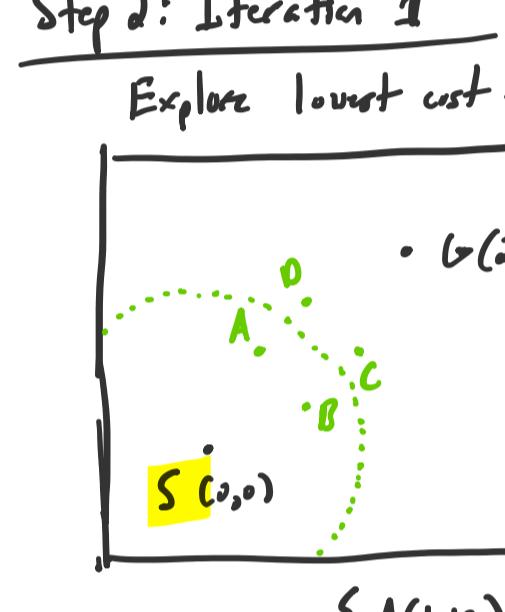


Fast Marching Trees*Core idea:

- FMT* randomly samples points in the space $\frac{1}{3}$ builds a tree by expanding from the lowest-cost node
- As $N \rightarrow \infty$, converges to optimal path
- Only evaluates collisions while connecting nodes (Lazy)

Simple Example

Start $S: (0,0)$
Goal $G: (2,2)$
Connection radius = 1

Step 1: Initialization

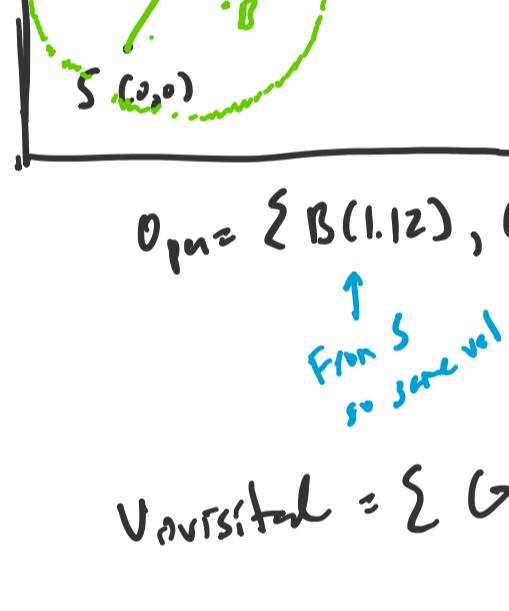
- Sample 5 points
- A: $(0.5, 1)$
- B: $(1, 0.5)$
- C: $(1.5, 1.5)$
- D: $(1, 1.5)$

$$Open = \{S(\text{cost}=0)\}$$

$$Unvisited = \{A, B, C, D, G\}$$

Step 2: Iteration 1

Explore lowest cost in open (S)



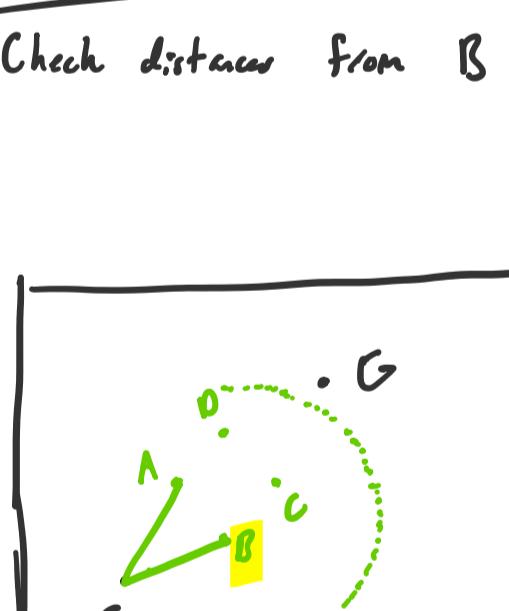
- Check nodes within 1.5 radius of S

$$A: d = \sqrt{(0.5-0)^2 + (1-0)^2} = 1.12 \leq 1.5 \checkmark$$

$$B: d = \sqrt{(1-0)^2 + (0.5-0)^2} = 1.12 \leq 1.5 \checkmark$$

$$Open = \{A(1.12), B(1.12)\}$$

$$Unvisited = \{C, D, G\}$$

Step 3: Iteration 2 - Explore A

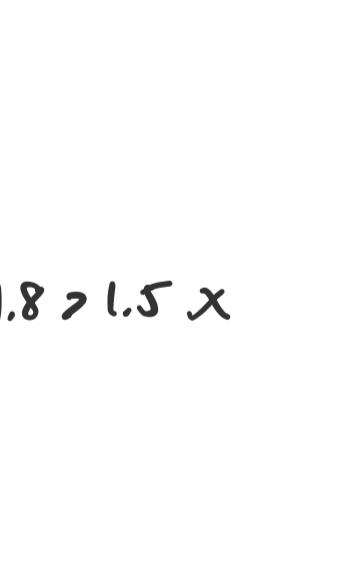
- Check nodes ≤ 1.5 of A

$$C: d = 1.12 \leq 1.5 \checkmark$$

$$D: d = 0.71 \leq 1.5 \checkmark$$

$$G: d = 1.8 > 1.5 \times$$

Graph representation



$$Open = \{B(1.12), C(2.14), D(1.12)\}$$

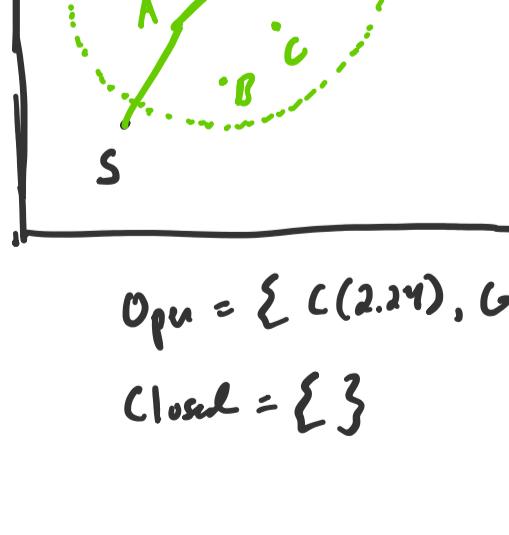
From S to S via A : $1.12 + 1.12 = 2.24$

From S to S via B : $1.12 + 1.12 = 2.24$

$$Unvisited = \{G\}$$

Step 4: Iteration 3 Expand B(1.12)

Check distance from $B(1, 0.5)$ to all unvisited nodes (G)

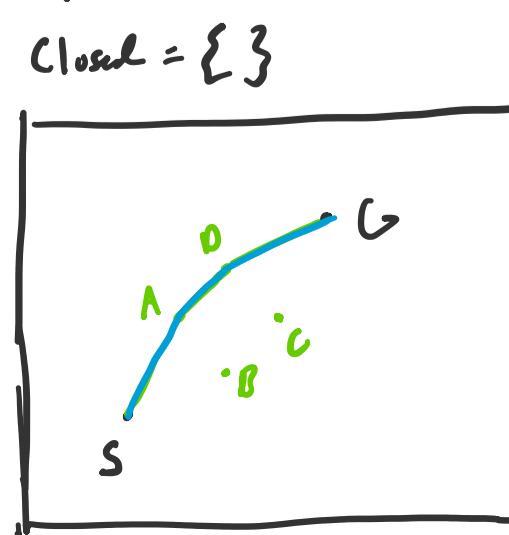


$$G(2,2): d = \sqrt{(2-1)^2 + (2-0.5)^2} = 1.8 > 1.5 \times$$

So, B was not fruitful... skip!

$$Open = \{D(1.12), C(2.24)\}$$

$$Unvisited = \{G\}$$

Step 5: Iteration 4 Expand D(1.12)

$$G(2,2): d = \sqrt{(2-1)^2 + (2-1.5)^2} = 1.12 \leq 1.5 \checkmark$$

(Goal) Reached!

Update cost: $D_{\text{cost}} + \overrightarrow{DG} = 1.12 + 1.12 = 2.24$

$$Open = \{C(2.24), G(2.24)\}$$

$$Closed = \{D\}$$

Path: $S \rightarrow A \rightarrow D \rightarrow G$

bc unvisited list is empty, algorithm terminates